Quantifying the Uncertainty in CME Kinematics Derived From Geometric Modeling of Heliospheric Imager Data

نویسندگان

چکیده

Geometric modeling of Coronal Mass Ejections (CMEs) is a widely used tool for assessing their kinematic evolution. Furthermore, techniques based on geometric modeling, such as ELEvoHI, are being developed into forecast tools space weather prediction. These models assume that solar wind structure does not affect the evolution CME, which an unquantified source uncertainty. We use large number Cone CME simulations with HUXt model to quantify scale uncertainty introduced and ELEvoHI arrival times by structure. produce database simulations, representing average, fast, extreme scenario, each independently propagating through 100 different ambient environments. Synthetic heliospheric imager observations these then range estimate kinematics. The errors depend location observer, but do seem scenario. In general, biased towards predicting apex distances larger than true value. For scenarios, minimised observer in L5 region. increase level path CME. time region, mean absolute 8.2 ± 1.2 h, 8.3 1.0 5.8 0.9 h scenarios.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the role of russia in transmission of energy from central asia and caucuses to european union

پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...

15 صفحه اول

Quantifying Uncertainty of Digital Elevation Models Derived from Topographic Maps

This paper explores a methodology for quantifying the uncertainty of DEMs created by digitising topographic maps. The origins of uncertainty in DEM production were identified and examined. The uncertainty of DEM data was quantified by computing a vector total of Root Mean Square Error (RMSE) from the source map, sampling and measurement errors, and the interpolation process. Distributional meas...

متن کامل

On the autonomous detection of coronal mass ejections in heliospheric imager data

[1] We report on the development of an Automatic Coronal Mass Ejection (CME) Detection tool (AICMED) for the Solar Mass Ejection Imager (SMEI). CMEs observed with heliospheric imagers are much more difficult to detect than those observed by coronagraphs as they have a lower contrast compared with the background light, have a larger range of intensity variation and are easily confused with other...

متن کامل

from linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar

chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...

15 صفحه اول

Quantifying Uncertainty in Flow Functions Derived from SCAL Data USS Relative Permeability and Capillary Pressure

Unsteady-state (USS) core flood experiments provide data for deriving twophase relative permeability and capillary pressure functions. The experimental data is uncertain due to measurement errors, and the accuracy of the derived flow functions is limited by both data and modeling errors. History matching provides a reasonable means of deriving in-phase flow functions from uncertain unsteady-sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Space Weather-the International Journal of Research and Applications

سال: 2022

ISSN: ['1542-7390']

DOI: https://doi.org/10.1029/2021sw002841